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Abstract

We present in this paper the displacement-driven version of a tangential force–displacement (TFD) model that accounts
for both elastic and plastic deformations together with interfacial friction occurring in collisions of spherical particles. This
elasto-plastic frictional TFD model, with its force-driven version presented in [L. Vu-Quoc, L. Lesburg, X. Zhang. An
accurate tangential force–displacement model for granular-flow simulations: contacting spheres with plastic deformation,
force-driven formulation, Journal of Computational Physics 196(1) (2004) 298–326], is consistent with the elasto-plastic
frictional normal force–displacement (NFD) model presented in [L. Vu-Quoc, X. Zhang. An elasto-plastic contact
force–displacement model in the normal direction: displacement-driven version, Proceedings of the Royal Society of Lon-
don, Series A 455 (1991) 4013–4044]. Both the NFD model and the present TFD model are based on the concept of addi-
tive decomposition of the radius of contact area into an elastic part and a plastic part. The effect of permanent indentation
after impact is represented by a correction to the radius of curvature. The effect of material softening due to plastic flow is
represented by a correction to the elastic moduli. The proposed TFD model is accurate, and is validated against nonlinear
finite element analyses involving plastic flows in both the loading and unloading conditions. The proposed consistent dis-
placement-driven, elasto-plastic NFD and TFD models are designed for implementation in computer codes using the dis-
crete-element method (DEM) for granular-flow simulations. The model is shown to be accurate and is validated against
nonlinear elasto-plastic finite-element analysis.
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1. Introduction and literature review

Particle systems in motion known as granular flows in nature and in industry have important implica-
tions that impact the safety and the economy of many human communities. Some examples are rock and
snow avalanches (e.g. [3–5]), landslides (e.g. [6]), volcanic pyroclastic flows (e.g. [7]), submarine flows (e.g.
[8]), pharmaceutical processing of medicine tablets (e.g. [9]). Even the mysterious songs2 of sand dunes in
deserts from the Gobi to the Death Valley, observed but unexplainable for almost 13 centuries, can now
be explained as a result of sand (granular) flow (e.g. [11–13,13]). The readers are referred to [1] for a
motivation on the need to model the inelastic nature of interparticle collisions and additional literature
review.

Because of the limitation of conventional experimental measurements and the development of computer
power, the discrete element method (DEM), as a computer simulation method, has been widely employed
to study the flow behavior of granular materials in the last decade. Simulation results, complemented with
experimental results when possible, were used to develop constitutive laws for granular flows in specifically
different regimes (e.g. [14]). In DEM simulations, particles move as rigid bodies whose translational and rota-
tional motions are governed by Newton’s laws. During contacts, among the flowing particles, the contact
forces are evaluated from the computed overlaps among those colliding particles using contact force–displace-
ment (FD) models in both normal and tangential directions. The readers are referred to [15] for more details
on DEM simulation procedure: contact detection, contact force evaluation, data structure, integration algo-
rithms and numerical examples. Other applications of particle contact mechanics and DEM simulations can
be found, e.g., in [16–23].

Accurate and efficient evaluation of the contact forces is crucial for a correct simulation of granular flows.
More accurate elasto-plastic NFD model led to more accurate velocity-dependent coefficient of restitution,
which is constant in some NFD model [24]. It has been amply demonstrated in [25] that improving the accu-
racy of the TFD model led to starkly different statistics of collision when compared to less accurate model. In
addition, to the best of our knowledge, there has been in the literature no coherent set of normal force–dis-
placement (NFD) and tangential force–displacement (TFD) models that can account for both elastic and plas-
tic deformations at contact, together with interfacial friction, in a consistent manner.

For dry granular flows, particle–particle forces are mainly direct mechanical contact forces among the col-
liding particles. At a contact point, there are two contact forces: the normal contact force P, which acts in the
direction normal to the contact plane, and the tangential force Q, which acts in the direction that lies in the
contact plane. Fig. 1 features two spheres in contact, with contact plane ðx; yÞ, subjected to both normal force
P and frictional tangential force Q. A NFD model gives the normal force P for a given normal displacement
a ¼ 1

2
ðai þ ajÞ,3 whereas a TFD model gives the tangential force Q for a given tangential displacement

d ¼ 1
2
ðdi þ djÞ.

We presented the force-driven version of an accurate and efficient elasto-plastic NFD model in [26], and
then the displacement-driven version in [2]; this elasto-plastic NFD model has been experimentally validated
in [27] based on detailed scanning electron microscopy and atomic force microscopy in a study on the mechan-
ical and electrical behaviors of particulate polymer granular materials. Subsequently, in a follow-up work in
[1], we presented the force-driven version of the elasto-plastic TFD model that is consistent with the formalism
set forth in our previous work on the elasto-plastic NFD model, and consistent with the Hertz, Cattaneo,
Mindlin, and Deresiewicz theory for frictional elastic contact. For implementation in DEM codes, it is impor-
tant to develop the displacement-driven version, which is presented here.

We recall that the novelty of the present TFD model lies in (i) the additive decomposition of the elasto-
plastic contact-area radius into an elastic part and a plastic part, (ii) the correction of the radii of the colliding
particles at the contact point, and (iii) the correction of the elastic moduli of the colliding particles. The
2 A low-pitch sound that was compared to that emitted by an airplane engine and an organ. The readers can listen to the actual sand-
dune songs by going to the web site mentioned in [10].

3 Even though a is the standard notation for the relative approach of distant points, it is more convenient to use 2a to describe the same
quantity in our work.



Fig. 1. Two spheres in contact: normal and tangential forces.
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correction of the contact-area radius represents an effect of the plastic deformation in the colliding particles,
whereas the correction of the radius of curvature represents a permanent indentation after impact. The
correction of the elastic moduli represents a softening of the material due to plastic flow. The present displace-
ment-version of the elasto-plastic-frictional TFD model is accurate, and is validated against nonlinear finite
element analyses involving plastic flows under both loading and unloading conditions.

Below, we review briefly the theory of elastic contact and the various FD models employed in DEM sim-
ulations, in particular the elasto-plastic NFD model in [2] to set the stage to introduce the present elasto-plas-
tic-frictional TFD model.

1.1. Theories for elastic contact

Hertz theory [28,29] provides the theoretical solution of the elastic contact between two homogeneous
spheres in the normal direction. Most NFD models currently used in DEM simulations are based on Hertz
theory of normal contact. Usually, the TFD model employed with a NFD model is based on Mindlin–Deres-
iewicz (MD) contact mechanics theory [30] for elastic frictional contact in the tangential direction between two
homogeneous spheres. The MD contact theory [30] is a fundamental advance toward solving the problem of
tangential elastic frictional contact. Both Hertz theory and MD theory [30] are accurate for elastic contact
between two homogeneous spheres only when the radius of contact area is very small compared to the radii
of the spheres; see [31] for finite element analysis (FEA) results. Even though, the theoretical solution from
MD theory [30] is limited to simple loading histories (see also [32–34]), most of the TFD models currently used
in DEM simulations are highly simplified models based on MD theory [30] (e.g. [32,35]), and are applied to all
the loading histories encountered in granular flows. In addition, when using NFD models based on Hertz the-
ory and TFD models based on MD theory [30] in DEM simulations, only elastic deformation is accounted for.
Plastic deformation, which is not accounted for by many existing FD models occurs, however, in most particle
collisions, as manifested through a coefficient of restitution less than one, and greatly affects the behavior of
granular flows. Therefore, to obtain reliable and accurate simulation results, it is necessary to develop NFD
and TFD models that account for both elastic and plastic deformation. See also [25] regarding the importance
of more accurate FD models.
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1.2. Walton & Braun [1986] NFD and TFD models for DEM simulations

NFD models based on Hertz theory give a nonlinear elastic relationship between the normal displacement a
and the normal contact force P. Consequently, when simulating the collision between a sphere and a rigid half
space, the ratio of outgoing velocity to the incoming velocity of the sphere, i.e., the coefficient of restitution, is
e = 1.0, implying that there is no kinetic energy dissipation caused by the collision. For most of collision prob-
lems encountered in granular flows, plastic deformation occurs at contact points, resulting in a coefficient of
restitution less than one, i.e., e < 1, as kinetic energy is dissipated after contact. To account for the effect of plas-
tic deformation, Walton & Braun (WB) [35] proposed a bilinear FD model that provides a rough approximation
to finite element analysis results [36] for elasto-plastic contact between a sphere and a rigid planar surface.

In the NFD model of WB [35], we have
P ¼
K1a for loading;

K2ða� a0Þ for unloading;

�
ð1:1Þ
where P is the normal contact force between two particles, a the normal displacement (half of the relative dis-
placement of the centers of the two spheres), K1 and K2 the slopes of the straight lines representing the loading
and unloading stiffness coefficients, a0 the residual displacement after complete unloading.

It can be proved that the coefficient of restitution e is related to the stiffness coefficients K1 and K2 as
follows:
e ¼
ffiffiffiffiffiffi
K1

K2

r
: ð1:2Þ
In a simulation, loading stiffness K1 and unloading stiffness K2 are constants for spheres, and usually K1 < K2.
Therefore, the coefficient of restitution e from the NFD model of WB [35] is a constant less than one (e < 1:0)
for a collision between two spheres. Even though the energy dissipation caused by plastic deformation is rep-
resented in this model, a constant coefficient of restitution does not agree with experimental evidence, since the
coefficient of restitution does not depend only on the material properties, but also on the magnitude of the
incoming velocity, and thus on the amount of plastic deformation in a collision (see [37–39]).

The TFD model of WB in [35], which is used with their proposed NFD model described above, is expressed
as follows
Qnþ1 ¼ Qn þ KT;nDdn; ð1:3Þ

where Qnþ1 and Qn are respectively the tangential force at time tnþ1 and time tn, KT;n the tangential stiffness
coefficient at time tn, and Ddn the incremental tangential displacement at time tn, computed based on the mo-
tion of particles in the previous time step. The tangential stiffness KT;n is a function of Pn, Qn, and Q*, which is
the value of the tangential force Q at the last turning point on the loading history of Q, and is expressed as
follows [35]:
KT;n ¼
KT;0 1� Qn � Q�

lP n � Q�

� �1=3

for Q increasing ð%Þ;

KT;0 1� Q� � Qn
lP n þ Q�

� �1=3

for Q decreasing ð&Þ;

8>>><
>>>:

ð1:4Þ
where KT;0 is the initial tangential stiffness computed following relation (1.5), and l the friction coefficient. For
initial loading, Q* is set to zero. The value of Q* will be subsequently reset to the value of Q at the turning
points, i.e., where the magnitude of the tangential force Q changes from increasing to decreasing, or vice versa.
The initial tangential stiffness KT;0 is connected to the normal stiffness K1 as [29, p. 220; 30, p.327]
KT;0 ¼ K1

2ð1� mÞ
2� m

; ð1:5Þ
The TFD model of WB in [35] is a highly simplified version of the MD theory [30]. The only cases where
the TFD model of WB [35] produces exactly the same TFD relation as the MD theory [30] does are under
constant normal force and satisfy either of the following conditions: (1) In the virgin loading case, i.e.,
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Q� ¼ 0, and (2) in the unloading from the virgin loading after the maximum tangential force have reached
very close to frictional limit, i.e., jQj � lP . For all other cases, the TFD model of WB [35] does differ sig-
nificantly from the MD theory [30] (see [15,32]). Thus, not only that the TFD model of WB in [35] is not
accurate compared to the MD theory [30], but by addressing only elastic contact while ignoring plastic
deformation, this TFD model of WB is not consistent with their NFD model [35], which accounts for plastic
deformation at contact in a highly simplified manner (e.g., lack of accuracy and leading to a constant coef-
ficient of restitution) [24].

1.3. A new elasto-plastic NFD model

The elasto-plastic NFD model presented in [2] accounts for both elastic and plastic deformations. A main
feature of this elasto-plastic NFD model is an additive decomposition of the contact radius. In an elasto-plas-
tic contact between two spheres subjected to a normal contact force P, the radius of the contact area is larger
than the contact radius ae determined by Hertz theory (for elastic contact), because of the plastic deformation.
Let aep denote the contact radius for elasto-plastic contact, we have aep P ae. We decompose the contact
radius into the sum of an elastic part, denoted by ae and determined by Hertz theory, and a plastic (correction)
part (caused by plastic deformation) denoted by ap, i.e.,
aep ¼ ae þ ap: ð1:6Þ

It is noted that the above decomposition of the contact radius is parallel to the decomposition of total elasto-
plastic strain �ep into elastic strain �e and plastic strain �p in the continuum theory of elasto-plasticity
�ep ¼ �e þ �p: ð1:7Þ

Based on FEA results of normal contact between two elastic-perfectly-plastic spheres, we suggest the fol-

lowing model for the plastic correction contact radius ap
ap ¼
CahP � P Y iðmÞ for loading;

CahP max � P Y iðmÞ for unloading;

�
ð1:8Þ
where PY is the normal contact force when incipient yield occurs, Ca is a constant dependent on the radii of the
spheres and on the material properties of the spheres, and the operator Ææ designates the MacCauley bracket
defined by
hxi ¼
0 for x 6 0;

x for x > 0:

�
ð1:9Þ
The coefficient Ca can be evaluated based on either FEA results [31] or on simple experiments on granular
materials [40].

With the elastic contact radius ae determined from Hertz theory and with the plastic correction contact
radius ap determined from (1.8) above, the elasto-plastic contact radius aep, as obtained from (1.6) can be used
to determine the normal displacement of the contact a by
2a ¼ ða
epÞ2

R�p
¼ ða

e þ apÞ2

CRðP ÞR�
; ð1:10Þ
where R�p ¼ CRðPÞR� is the radius of relative contact curvature after plastic deformation occurs, and is mod-
ified from the elastic radius R* of contact curvature by a multiplicative factor CRðP Þ. Let (i)R and (j)R be the
radii of the two spheres in contact, the radius R* of contact curvature is defined as
R� :¼ 1

ðiÞR
þ 1

ðjÞR

� ��1

: ð1:11Þ
The curvature modification coefficient CRðP Þ is a function of the normal contact force P and of the mechanical
properties of the two spheres in contact. For example, for two identical aluminum spheres (with radius
R ¼ 0:1 m) in contact as described in [2], the curvature modification coefficient CRðP Þ is expressed as



Fig. 2. Normal force P versus normal displacement a by different models from the FEA displacement path for the loading and unloading
path with Pmax.
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CRðP Þ ¼
1:0 for P 6 P Y ;

1:0þ KchP � P Y i for P > P Y ;

�
ð1:12Þ
where Kc ¼ 2:69� 10�4 N�1 is a constant. We refer the readers to [2,31] for more details on the elasto-plastic
NFD model and finite element analyses of elasto-plastic contact problems.

It is shown in [2] that the above elasto-plastic NFD model accurately captures the effects of plastic defor-
mation in the NFD relationship (as shown in Fig. 2).

In the following, we present an elasto-plastic TFD model that is completely consistent with the above
elasto-plastic NFD model for use in DEM simulations of granular flows. It is believed that the present set
of elasto-plastic-frictional NFD and TFD models is the first of its kind, i.e., a set of consistent models in
the normal and tangential directions for elasto-plastic-frictional contact.

As pointed out in [2], the elasto-plastic NFD model is general in accounting for plastic deformation by the
additive decomposition of contact radius (1.6) and the modification of contact curvature (in (1.10)), but the
value of some of the model parameters (e.g., Ca and Kc) dependent on the material properties and the geom-
etry of the spheres in contact. Similarly, the elasto-plastic TFD model presented in this paper is a general
approach, and the same set of model parameters, including Ca and Kc, are employed to account for the effect
of plastic deformation.

2. The elastic tangential force–displacement (TFD) model

We review in this section the TFD model for elastic frictional contact proposed in [32]. This TFD model
serves as the foundation for the new TFD model for elasto-plastic frictional contact to be presented in the
subsequent section.

2.1. TFD relationship under constant normal force

The TFD model of WB [35] only agrees with the MD theory [30] in the simplest case where the normal force
P is constant. When both the normal force P and the tangential force Q vary, as occurred frequently in the
collisions in granular flows, the TFD model of WB [35] introduces large errors in the d–Q (FD) relationship,
i.e., the relationship between the tangential displacement d and the tangential force Q. We propose in [32] an



Fig. 3. Tangential stiffness KT for constant normal force P.
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accurate and efficient TFD model that correctly accounts for the case where both P and Q are varying in elas-
tic frictional contact. This improved TFD model is shown to produce DEM simulation results that corrobo-
rate with experimental results, whereas other TFD models did not [32].

The TFD model in [32] is an incremental model that determines the tangential contact force Qnþ1 at the new
time step (n + 1) based on the given incremental tangential displacement Ddnþ1 and previously calculated force
and displacement histories. For the loading cases with a constant normal contact force P, the TFD model in
[32] follows exactly the MD theory [30] (Fig. 3).

The incremental formula for computing the tangential force is the same as (1.3), which was used in the TFD
model of WB [35], but the tangential stiffness is determined in a different manner by
KT ¼

KT;0 1� Q� Q�

2lP

� �1=3

for Q increasing ð%Þ and jQj < jQ�j;

KT;0 1� Q
lP

� �1=3

for Q increasing ð%Þ and jQjP jQ�j;

KT;0 1� Q� � Q
2lP

� �1=3

for Q decreasing ð&Þ and jQj < jQ�j;

KT;0 1þ Q
lP

� �1=3

for Q decreasing ð&Þ and jQjP jQ�j;

8>>>>>>>>>><
>>>>>>>>>>:

ð2:1Þ
where KT;0 is the tangential stiffness for initial loading. According to the MD theory [30], the tangential stiff-
ness KT;0 is determined by
KT;0 ¼ 8a
2� ðiÞm
ðiÞG

þ 2� ðjÞm
ðjÞG

� ��1

; ð2:2Þ
where a is the contact radius for a given normal force P, as determined by (3.1) (i.e., Hertz theory), (i)m and (j)m
the Poisson’s ratios of spheres (i) and (j), respectively, and (i)G and (j)G the shear moduli of the spheres (i) and
(j) in contact, respectively.



Fig. 4. TFD relationship for P increasing, Q increasing.
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2.2. TFD relationship under varying normal force

In the following, we briefly review how the change of the normal contact force P is accounted for in the
loading cases where both P and Q are varying. We consider four cases, out of eleven cases considered in
[30]. More detailed discussion can be found in [32].

2.2.1. Case of P increasing, Q increasing

Let DP and DQ be the increments of normal force and tangential force, respectively. Let state be the state
of the FD relationship at the previous time step, with the normal force, the tangential force, and the tangential
displacement denoted by fP 0;Q0; d0g, respectively (see Fig. 4). Assuming that the loading up to state had
been a simple loading (e.g. [30]), we first increase the normal force to P 1 ¼ P 0 þ DP , then increase the tangen-
tial force by DQ; there are two subcases: DQ P lDP and DQ < lDP .

For the subcase where DQ P lDP , the tangential force increment DQ is decomposed into two parts: DQ01

and DQ12 such that DQ ¼ DQ01 þ DQ12 with DQ01 ¼ lDP . According to the MD theory [30], when both DP

and DQ are very small (DP ! 0, DQ! 0), the tangential stiffness for the first part of the increment, i.e.,
DQ01 is the same as the initial tangential stiffness for P constant loading case, i.e.,
ðKTÞ01 ¼ ðKT;0ÞP¼P 0
: ð2:3Þ
State , after being reached at the end of the first part DQ01, is equivalent to a state of initial loading under the
constant normal force P ¼ P 1 ¼ P 0 þ DP . In this situation, the tangential stiffness for the second part of DQ12

takes the same expression as in (2.1) for the case under constant normal force P, i.e.,
ðKTÞ12 ¼ ðKT;0ÞP¼P 1
1� Q1

lP 1

� �1=3

; ð2:4Þ
where Q1 ¼ Q0 þ DQ01 ¼ Q0 þ lDP as shown in Fig. 4.
The coefficient ðKT;0ÞP¼P 1

is the initial tangential stiffness for the TFD curve under constant normal loading
P ¼ P 1, determined by (2.2). Therefore, at state
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Q2 ¼ Q0 þ lDP þ ðKTÞ12Dd12 ¼ Q0 þ lDP þ ðKTÞ12 Dd� lDP
ðKT;0ÞP¼P 0

 !
; ð2:5Þ
and
d2 ¼ d0 þ
lDP

ðKT;0ÞP¼P 0

þ DQ� lDP
ðKTÞ12

: ð2:6Þ
For the subcase where DQ < lDP , the tangential force increment is not large enough to complete the tran-
sition from state to state shown in Fig. 4. We use the following FD relationship for this case
Q0 ¼ Q0 þ ðKT;0ÞP¼P 0
Dd; ð2:7Þ
where Dd < Dd01 ¼ lDP
ðKT;0ÞP¼P 0

. Since this state is not a state equivalent to the case of tangential loading under

constant normal force P, the loading history after this step of loading increment is no longer a simple loading
history.

In DEM simulations, the tangential force Qnþ1 is determined from the computed displacement dnþ1 at time
tnþ1. The state of the system (forces and displacements) at time tn is thought to be at state , as shown in Fig. 4.

Let Dd ¼ dnþ1 � dn, and DP ¼ P nþ1 � P n. When Dd P lDP
ðKT;0ÞP¼P n

, we have !

Qnþ1 ¼ Qn þ lDP þ KT;n Dd� lDP

ðKT;0ÞP¼P n

ð2:8Þ
where the current tangential stiffness KT;n is determined by (2.1) to yield
KT;n ¼ ðKT;0ÞP¼P nþ1
1� Qn þ lDP

lP nþ1

� �1=3

: ð2:9Þ
When Dd < lDP
ðKT;0ÞP¼P n

, the tangential force Qnþ1 is determined by
Qnþ1 ¼ Qn þ ðKT;0ÞP¼P n
Dd: ð2:10Þ
2.2.2. Case of P decreasing, Q increasing

Let DP ¼ P nþ1 � P n and Dd ¼ dnþ1 � dn. Clearly, DP < 0 and Dd > 0 for this loading case. According to the
TFD model [32], the tangential force Qnþ1 at time tnþ1 can be expressed by
Qnþ1 ¼ Qn þ KT;n Dd� lDP
ðKT;0ÞP¼P n

þ lDP
K 0T;n

 !
; ð2:11Þ
where KT;n is the current tangential stiffness, K 0T;n an intermediate tangential stiffness for this loading step. The
stiffness coefficients KT;n and K 0T;n are determined by
KT;n ¼ ðKT;0ÞP¼P nþ1
1� Qn

lP nþ1

� �1=3

; ð2:12Þ
and
K 0T;n ¼ ðKT;0ÞP¼P nþ1
1� Qn þ lDP

lP nþ1

� �1=3

: ð2:13Þ
2.2.3. Case of P increasing, Q decreasing
Again, with DP ¼ P nþ1 � P n and Dd ¼ dnþ1 � dn, we have DP > 0 and Dd < 0 for this loading case. There

are two subcases that need to be considered: jDdjP lDP
ðKT;0ÞP¼P n

and jDdj < lDP
ðKT;0ÞP¼P n

.

For the first subcase where when jDdjP lDP
ðKT;0ÞP¼P n

, according to the TFD model in [32], the tangential
force can be expressed as
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Qnþ1 ¼ Qn � lDP þ KT;n Ddþ lDP
ðKT;0ÞP¼P n

 !
; ð2:14Þ
where KT;n is the tangential stiffness determined by
KT;;n ¼ ðKT;0ÞP¼P nþ1
1� Q�n þ lDP � ðQn � lDP Þ

2lP nþ1

� �1=3

: ð2:15Þ
After this step, the tangential force for the last turning point is updated using Q�nþ1 ¼ Q�n þ lDP .

For the subcase where jDdj < lDP
ðKT;0ÞP¼P n

, the tangential force is then computed by
Qnþ1 ¼ Qn þ ðKT;0ÞP¼P n
Dd: ð2:16Þ
After this step of loading increment, the loading history is no longer a simple loading history.

2.2.4. Case of P decreasing, Q decreasing

With DP ¼ P nþ1 � P n and Dd ¼ dnþ1 � dn, we now encounter three subcases in this loading case: (i)
Qn 6 Q�n þ 2lDP , and for Qn > Q�n þ 2lDP , there are two additional subcases: (ii) Q�n þ 2lDP < Qn < Q�nþ
lDP , and (iii) Q�n þ lDP 6 Qn.

In the first subcase where Qn 6 Q�n þ 2lDP , the tangential force can be expressed as
Qnþ1 ¼ Qn þ KT;n Ddþ lDP
ðKT;0ÞP¼P n

� lDP
K 0T;n

 !
; ð2:17Þ
where the stiffness coefficients KT;n and K 0T;n are determined by
KT;n ¼ ðKT;0ÞP¼P nþ1
1�

Q�nþ1 � Qn

2lP nþ1

� �1=3

; ð2:18Þ
and
K 0T;n ¼ ðKT;0ÞP¼P nþ1
1�

Q�nþ1 � ðQn � lDPÞ
2lP 1

� �1=3

; ð2:19Þ
with Q�nþ1 ¼ Q�n þ lDP being the updated (equivalent) tangential force at the last turning point.
For the subcase where Qn > Q�n þ 2lDP , and Q�n þ 2lDP < Qn < Q�n þ lDP , the tangential force Qnþ1 is

computed by
Qnþ1 ¼ Q�n þ lDP þ KT;n Dd� Q�n þ lDP � Qn

ðKT;0ÞP¼P n

 !
; ð2:20Þ
where the tangential stiffness KT;nþ1 is determined by
KT;n ¼ ðKT;0ÞP¼P nþ1
1� Q�n þ lDP � Qn

2lP nþ1

� �1=3

: ð2:21Þ
For the subcase where Qn > Q�n þ 2lDP , and Q�n þ lDP 6 Qn, there are subsubcases to consider. If

jDdj 6 jQ
�
n þ lDP � Qn

K 0T;n
j, the tangential force is computed by
Qnþ1 ¼ Q�n þ lDP þ KT;n Dd� Q�n þ lDP � Qn

K 0T;n

 !
; ð2:22Þ
where the tangential stiffness K 0T;n is determined by
K 0T;n ¼ ðKT;0ÞP¼P n
1� Q�n � Qn � lDP

4lP n

� �1=3

: ð2:23Þ
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For the stiffness coefficient KT;n, if jDdj 6 jQ
�
n þ lDP � Qn

K 0T;n
j, where K 0T;n is computed by (2.23), then� �
KT;n ¼ ðKT;0ÞP¼P nþ1
1� Q�n þ lDP

lP nþ1

1=3

; ð2:24Þ
else if jDdj > jQ
�
n þ lDP � Qn

K 0T;n
j, where K 0T;n is computed by (2.23), then
KT;n ¼ ðKT;0ÞP¼P nþ1
: ð2:25Þ
We refer the readers to [30,32] for detailed derivation of the above formulae.

3. The elasto-plastic frictional TFD model

The elasto-plastic frictional TFD model proposed in this paper is consistent with the elasto-plastic NFD
model presented in [2]. It is developed from the TFD model in [32] for elastic-frictional contact summarized
in Sections 2.1 and 2.2. The account for the effect of plastic deformation is based on the same formalism used
for the elasto-plastic NFD model, i.e., the additive decomposition of the elasto-plastic contact radius aep by
(1.6), and the modification of the radius R* of local contact curvature by (1.10). In the following, we will dis-
cuss formulation of the TFD model that accounts for plastic deformation, and present the pseudo code for the
proposed TFD model.

3.1. The effect of plastic deformation

In the elasto-plastic NFD model in [2], to account for the effect of plastic deformation on the normal force–
displacement relationship, we introduce the additive decomposition of elasto-plastic contact radius aep into the
elastic part ae and the plastic part ap, according to (1.6). Following Hertz theory, the elastic contact radius ae is
determined by
ae ¼ 3PR�

4E�

� �1=3

; ð3:1Þ
where R* is the equivalent radius of relative contact curvature defined by
R� :¼ 1

ðiÞR
þ 1

ðjÞR

� ��1

; ð3:2Þ
E* the equivalent elastic modulus for the contact defined by
E� :¼ 1� ðiÞm2

ðiÞE
þ 1� ðjÞm2

ðjÞE

� ��1

: ð3:3Þ
In addition to the increase in the contact area, another feature of elasto-plastic contact is that the irreversible
plastic deformation tends to flatten the contact surface, thus decreases the relative contact curvature. Fig. 5
shows the increase of the radius of contact curvature, as caused by plastic deformation when a sphere contacts
a rigid planar surface. In [2], we use a coefficient CRðP ÞP 1:0 to modify the local radius of contact curvature.
For given material properties the radii of spheres in contact, the coefficient CRðP Þ is determined by the normal
force P (using e.g. (1.12)).

In 3-D finite element analyses (FEA) of two identical elastic-perfectly-plastic spheres contacting against
each other with friction [31], we observe the following force–displacement (FD) behavior of the tangential con-
tact stiffness:

1. When the contact is in the elastic range, i.e., without yield and plastic deformation, the FD behavior in
normal direction follows the Hertz theory; the FD behavior in tangential direction follows the MD the-
ory [30].

2. For aluminum, which is the material employed in the FEA in [31], while the plastic zone under the com-
bined loading of P and Q remains very close to the plastic zone created by the normal force P alone, plastic
deformation clearly affects the TFD behavior (see Remark 3.1 for more explanation).



Fig. 5. Sphere in contact with a rigid planar surface: plastic deformation increases the radius of local relative contact curvature
from R to Rp.
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3. In the case where the normal force P is applied on the sphere until its magnitude becomes very large com-
pared to the yield normal force PY (P � P Y ), and then held constant while the tangential force Q is applied
with increasing magnitude, even though there is a large amount of plastic deformation involved, the TFD
behavior is stiffer than that obtained for the elastic case using the MD theory [30] (see Remark 3.1 for more
explanation, and also [2]). Fig. 6 shows the TFD curves, computed by FEA and by the MD theory [30], for
two identical aluminum spheres of radius R ¼ 0:1 m in contact with each other. The spheres are subjected to
a constant normal load P ¼ 2600 N and varying tangential force Q. FEA results were obtained for elasto-
plastic behavior of the material.
Fig. 6. Two identical aluminum spheres in contact: TFD curves from FEA of elasto-plastic sphere material, and from Mindlin &
Deresiewicz [1953] (MD[1953]) elastic theory. Constant normal force P ¼ 2600 N, and varying tangential force Q.
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4. When both the normal force P and the tangential force Q are increasing, the FD behavior in the normal
direction follows what described in [2], i.e., softer than Hertz (elastic) theory; the FD behavior in the tan-
gential direction is also softer than that from the MD (elastic) theory [30], as a result of the plastic
deformation.

5. The TFD curves for both elastic and elasto-plastic materials display a hysteresis effect when the applied
tangential force Q goes through cycles of loading, unloading and reloading. The TFD curve for the
elasto-plastic material display a softer behavior during loading. Fig. 7 shows the FEA results of the same
sphere as in Fig. 6, subjected to varying normal and tangential forces (P and Q), and a comparison with the
MD elastic-frictional contact theory [30]. The step like behavior in the TFD curve during loading is due to
the change in the normal load P throughout the loading phase. The maximum magnitude of P is
P max ¼ 1500 N.
Remark 3.1. Since Q 6 lP throughout the loading and unloading stages, and since the coefficient of friction
chosen was l ¼ 0:2, the effect of the tangential force Q on the plastic deformation is relatively smaller than
that of the normal force P.

Also, it is interesting to observe that plastic deformation makes the TFD curve stiffer, compared to that of
elastic material, in the case where the normal load P is constant. The reason is that when the sphere yields
under the normal force P that is much larger than the yield normal force P Y , the contact area is also much
larger than that of the elastic case. It follows that there is more contact area to resist the tangential force Q
through friction. On the other hand, when both P and Q are varying, plastic deformation affects the TFD
relationship that is softer and has a step-like pattern shown in Fig. 7. We refer the readers to [31] for more
details.

Based on the FEA results, it can be concluded that the plastic deformation affects the TFD behavior in
following ways: (i) Increase the contact radius a, and thus increase the tangential stiffness. (ii) Increase the
radius of local contact curvature R�p, and thus increase the tangential stiffness. (iii) The plastic zone weakens
Fig. 7. Two identical aluminum spheres in contact: TFD curves from FEA of elasto-plastic sphere material, and from Mindlin &
Deresiewicz [1953] (MD[1953]) elastic theory. Varying normal force P and tangential force Q.
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the resistance to the tangential force, and thus decreases the tangential stiffness. For most of the loading cases
considered, FEA yields a TFD relationship that is softer than that of the MD theory [30] for elastic frictional
contact.

Let us look at the TFD relationship described in Sections 2.1 and 2.2. Only the calculation of initial tan-
gential stiffness KT;0 (see (2.2)) is connected to the effect of plastic deformation described above. Considering
that the TFD curves from elasto-plastic FEA results retain the same shape as those from the MD theory [30],
we retain much of the formulation described in Sections 2.1 and 2.2 to account for the effect of changing in the
normal force, and this for all loading cases. Recall that
KT;0 ¼ 8a
2� ðiÞm
ðiÞG

þ 2� ðjÞm
ðjÞG

� ��1

; ð2:2Þ
If one inserts the increased elasto-plastic contact radius aep into (2.2), the tangential stiffness is increased to
account for the effect of plastic deformation. In this case, the weakening of tangential stiffness by plastic defor-
mation could not be properly represented. For this reason, we introduce the equivalent Young’s modulus
ðE�Þep for the elasto-plastic contact in the tangential direction.

For the cases where the normal force P is increasing, we replace a by aep, R� by R�p, and E by ðE�Þep, in (3.1)
to obtain
aep ¼
3PR�p

4ðE�Þep

� �1=3

: ð3:4Þ
Therefore, for P increasing,
ðE�Þep ¼
3PR�p

4ðaepÞ3
¼ 3PCRðP ÞR�

4ðaepÞ3
: ð3:5Þ
From (3.5) it can be seen that since the contact radius aep > ae when there is a plastic deformation, this
enlarged contact area tends to decrease ðE�Þep, if the other quantities are held constant. On the other hand,
since the radius of contact curvature R�p P R� when there is plastic deformation, this increase in the radius

of contact curvature tends to increase ðE�Þep. For most cases, the effect of aep is stronger, and thus the equiv-

alent elasto-plastic Young’s modulus ðE�Þep is usually less than the original material Young’s modulus E, as if
the Young’s modulus is weakened by the plastic deformation. It should be noticed that since ðE�Þep is propor-
tional to R�p ¼ CRðP ÞR� as given in (3.5), the use of ðE�Þep in the computation of the tangential stiffness in the
TFD relationship therefore also accounts for the effect of the increase in the radius of contact curvature due to
plastic deformation.

Recalling that G ¼ E
2ð1þ mÞ, and assuming that the two spheres in contact have the same Poisson’s ratios,

i.e., (i)m = (j)m = m, we can rewrite (2.2) as follows:
KT;0 ¼ 4aep ð1þ mÞð2� mÞ
ðiÞE

þ ð1þ mÞð2� mÞ
ðjÞE

� ��1

: ð3:6Þ
We can express the initial tangential stiffness for the TFD relationship in terms of the Young’s modulus E* by
using (3.3) in (3.6). Once this step is done, we again replace E* by ðE�Þep to account for plastic deformation in
the computation of KT;0 and obtain
KT;0 ¼ 4aepðE�Þep 1� m
2� m

� �
: ð3:7Þ
Therefore, when the normal force P is increasing, expression (3.7) is used in the computation of the tangential
stiffness in the TFD relationship to account for the effect of plastic deformation.

When the normal force P is decreasing, the plastic deformation is frozen, as the spheres undergo elastic
unloading. Therefore, the following formula is used to modify the equivalent elastic modulus
ðE�Þep ¼ 3PCRðP maxÞR�

4ðaeÞ3
; ð3:8Þ
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where the value of CR is frozen at is value at P ¼ P max, and the contact radius in the denominator is the elastic
part ae. The tangential stiffness in the TFD relationship is computed using expression (3.7) for the initial tan-
gential stiffness KT;0, but with ðE�Þep computed from (3.8).

It should be noticed that since plastic deformation is mainly attributed to the normal force P, when P
remains a constant during the loading or unloading of the tangential force Q, the plastic zone is considered
as unchanged. Therefore, the modification of tangential stiffness for the case where P is a constant should
be similar to that of the case where P is decreasing, i.e., (3.8) is used to compute the equivalent Young’s mod-
ulus ðE�Þep.

The modification of the tangential stiffness of the TFD relationship can properly account for the effect of
plastic deformation for a range of the ratio of increment of P over increment in Q. Further work is needed to
extend this range, which is large enough for granular flow simulations. We refer the readers to [1] for more
detailed discussion.

Now we can see that the approach to account for the effect of plastic deformation on TFD relationship
involves both the additive decomposition of the contact radius aep (in the computation of KT;0 by (3.7))
and the modification of contact curvature (as in the equivalent elastic modulus by (3.5)). Therefore, the pres-
ent elasto-plastic TFD model is consistent with the elasto-plastic NFD model in [2]. Again, the TFD model
presented here is general, and the values of some model parameters (e.g., Ca and Kc) of course depend on the
material and the geometry of the spheres in contact. This is similar to the construction of plasticity model in
continuum mechanics as we described in [2].
3.2. Algorithm and implementation of the new elasto-plastic TFD model

In a DEM simulation code, the increment of tangential displacement between two spheres in contact is
evaluated by the relative position and velocities of these two spheres in each timestep of numerical inte-
gration (see [15]). At time tnþ1, the normal contact force P nþ1 is computed by the elasto-plastic NFD
model that is consistent with the present TFD model, and whose algorithm is presented in [2]. We use
this present elasto-plastic TFD model to compute the current tangential contact force Qnþ1 based on
the increment of tangential displacement Ddnþ1 ¼ dnþ1 � dn, and on the loading history previously
calculated.

We can see, from previous discussion, that the effect of plastic deformation on the TFD relationship is
accounted for by using (3.7) to compute the initial tangential stiffness using the elasto-plastic contact
radius aep and the equivalent Young’s modulus ðE�Þep. Noticing that the shape of the TFD curves
obtained from elasto-plastic FEA is similar to that obtained from the MD theory [30] and from the
TFD model in [32], we employ the same procedure as described in Section 2.2 to account for the effect
of varying normal force P. The implementation of the present elasto-plastic TFD model is described
algorithmically in the pseudo code below. In Algorithm 3.1, the elasto-plastic NFD model is the one pre-
sented in [2]. Therefore, the implementation of the proposed elasto-plastic TFD model follows Algorithm
3.1.

Algorithm 3.1. Elasto-plastic TFD model: displacement-driven version.

1 Input: ðiÞR; ðjÞR;E; m; rY .
2 PY calculated using the elasto-plastic NFD model.
3 Pn, P nþ1, and Pmax calculated using the elasto-plastic NFD model.
4 ae

nþ1, ap
nþ1, and aep

nþ1 calculated using the elasto-plastic NFD model.
6 Displacement fdn; dnþ1g, forces fQn;Q

�
ng.

7 Goal: compute next tangential force Qnþ1.
8 Initialization: Q�0 ¼ 0, Qinc ¼ true.

10 Calculate DP nþ1 ¼ P nþ1 � P n.
11 Calculate Ddnþ1 ¼ dnþ1 � dn.
13 Set Q�nþ1 ¼ Q�n.
15 rif DP nþ1 ¼ 0 (P constant)
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17 sif P nþ1 6 P Y (elastic case)
18 Calculate KT;0 via (2.2).
19 selseif P nþ1 > P Y (plastic case)
20 Calculate ðE�Þep via (3.8).
21 Calculate KT;0 via (3.7).
22 sendif

24 tif Ddnþ1 P 0 (Q increasing)
25 Calculate KT;n via (2.1).
26 Calculate Qnþ1 via (1.3).
27 Set Qinc ¼ true.
28 telseif Ddnþ1 < 0 (Q decreasing)
29 if Qinc ¼ true
30 Set Q�nþ1 ¼ Qn.
31 endif

32 Calculate KT;n via (2.1).
33 Calculate Qnþ1 via (1.3).
34 Set Qinc ¼ false.
35 tendif

37 relseif DP nþ1 > 0 (P increasing)
39 uif P nþ1 6 P Y (elastic case)
40 Calculate KT;0 via (2.2).
41 uelseif P nþ1 > P Y (plastic case)
42 Calculate ðE�Þep via (3.5).
43 Calculate KT;0 via (3.7).
44 uendif

46 vif Ddnþ1 P 0 (Q increasing)

47 wif Ddnþ1 P lDP
ðKT;0ÞP¼P n

48 Calculate KT;n via (2.9).
49 Calculate Qnþ1 via. (2.8).

50 welseif Ddnþ1 <
lDP

ðKT;0ÞP¼P n

51 Calculate Qnþ1 via (2.10).
52 WARNING: NOT a simple loading step.
53 wendif

54 Set Qinc ¼ true.
56 velseif Ddnþ1 < 0 (Q decreasing)
57 if Qinc ¼ true
58 Set Q�nþ1 ¼ Qn.
59 endif

60 xif kDdnþ1kP lDP
ðKT;0ÞP¼P n

61 Calculate KT;n via (2.15).
62 Calculate Qnþ1 via (2.14).

63 xelseif kDdnþ1k < lDP
ðKT;0ÞP¼P n

64 Calculate Qnþ1 via (2.16).
65 WARNING: NOT a simple loading step.
66 xendif

67 Update Q�nþ1 ¼ Q�n þ lDP .
68 Set Qinc ¼ false.
69 vendif
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71 relseif DP nþ1 < 0 (P decreasing)
73 yif P nþ1 6 P Y (elastic case)
74 Calculate KT;0 via (2.2).
75 yelseif P nþ1 > P Y (plastic case)
76 Calculate ðE�Þep via (3.8).
77 Calculate KT;0 via (3.7).
78 yendif

80 zif Ddnþ1 P 0 (Q increasing)
81 Calculate KT;n via (2.12).
82 Calculate K 0T;n via (2.13).
83 Calculate Qnþ1 via (2.11).
84 Set Qinc ¼ true.
86 zelseif Ddnþ1 < 0 (Q decreasing)
87 if Qinc ¼ true

88 Set Q�nþ1 ¼ Qn.
89 endif

90 s10 if Qn 6 Q�nþ1 þ 2lDP
91 Calculate KT;n via (2.18).
92 Calculate K 0T;n via (2.19).
93 Calculate Qnþ1 via (2.17).
94 Update Q�nþ1 ¼ Q�n þ lDP .
96 s10 elseif Qn > Q�nþ1 þ 2lDP
97 s11 if Q�nþ1 þ 2lDP < Qn < Q�nþ1 þ lDP
98 Calculate KT;n via (2.21).
99 Calculate Qnþ1 via (2.20).

100 Update Q�nþ1 ¼ Q�n þ lDP .
101 s11 elseif Q�nþ1 þ lDP 6 Qn

102 Calculate K 0T;n via (2.23).

103 s12 if kDdk 6 kQ�nþ1 þ lDP � Qn

K 0T;n
k

104 Calculate KT;n via (2.24).

105 s12 elseif kDdk 6 kQ�nþ1 þ lDP � Qn

K 0T;n
k

106 Calculate KT;n via (2.25).
107 s12 endif

108 Calculate Qnþ1 via (2.22).
109 Update Q�nþ1 ¼ Q�n þ lDP .
110 s11 endif
112 s10 endif

114 Set Qinc ¼ false.
115 zendif

117 rendif
4. Numerical examples: comparison with FEA results

We implemented the present elasto-plastic TFD model into a MATLAB code. The TFD curves produced
by using the present TFD model are compared to the corresponding TFD curves obtained from 3-D FEA
results for the static contact problem between two identical aluminum spheres. Finite element analyses are per-
formed for the loading history shown in Fig. 8 and Table 1.

The mechanical properties of the aluminum sphere are: Young’s modulus E ¼ 7:0� 1010 N/m2, Poisson’s
ratio m ¼ 0:3, material yield stress rY ¼ 1:0� 1084 N/m2, and coefficient of friction between the sphere and the



Fig. 8. Loading history for the comparison of TFD curves.

Table 1
Force parameters for loading history shown in Fig. 8

Loading history P maxðNÞ QmaxðNÞ P QbgðNÞ lP maxðNÞ
A 1500 270 300 300
B 500 90 100 100
C 250 45 50 50
D 2600 500 2600 520
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planar surface l ¼ 0:2. The radius of the aluminum sphere is R ¼ 0:1 m. For the FEA, elastic-perfectly-plastic
and time-independent plasticity are employed. For the purpose of comparison, only some of the TFD curves
are presented in this paper, and we refer the interested readers to [31] for more details on the related FEA
models and results.

The TFD curves shown in Fig. 9 are produced using the following procedures: At first, we use the loading
history A (shown in Fig. 8 and Table 1) as the input for the FEA using ABAQUS with elastic-perfectly-plastic
sphere material in the contact problem to compute the time history of the normal displacement denoted by afe

and of the tangential displacement dfe. Since the TFD model presented in Section 3.2 is of the displacement-
driven type, the FEA displacement results afe and dfe are used as input into our MATLAB code, which is
based on Algorithm 3.1, to compute the tangential force Qpm. The normal force P is calculated using the
elasto-plastic NFD model described in [2]. The TFD curve from the MD theory [30] is obtained by inputting
the loading history A (shown in Fig. 8 and Table 1) to obtain the output of tangential displacement history
dmin for elastic contact. The results with the loading histories B, C, and D shown in Figs. 10–12, respectively,
are produced using a similar procedure.

Remark 4.1. It should be noticed that the FD relationship shown in Figs. 9–12 are produced using
procedures that are different in nature. That is, the FD curves from the FEA results are produced using a
force-driven procedure, while the FD curves from the proposed elasto-plastic TFD model are produced using
a displacement-driven procedure. Since at the beginning we do not know the time history of the tangential
displacement, we use FEA to produce such time history using a force-driven procedure, in which the time
history of P and Q is given. The time history of the tangential displacement obtained from FEA is then used
as input for the present TFD model to obtain the time history of the tangential force in a displacement-
driven procedure. The results from the MD theory [30] are produced in a force-driven procedure for
comparison.



Fig. 9. TFD curves for loading history A (Fig. 8 and Table 1): Comparison of the present elasto-plastic TFD model, FEA, and Mindlin &
Deresiewicz [1953] (MD[1953]) elastic contact theory.
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Fig. 9 shows the TFD curves under varying normal force P with P max ¼ 1500 N. It can be seen that the
TFD curve produced by the present elasto-plastic TFD model agrees with the TFD curve from FEA results.
Since P max ¼ 1500 N > P Y ¼ 36:45 N, both the curve from FEA results and the curve from the present TFD
model show much larger energy dissipation in the tangential direction than the TFD curve from the MD the-
ory [30] for elastic contact. Clearly, the MD theory [30] cannot predict the TFD relationship correctly for
elasto-plastic contact when there is plastic deformation. Quantitatively, the maximum tangential force
employed in FEA is ðQfeÞmax ¼ 270 N, which is part of the time history of the applied forces that produce
the time history of tangential displacement used as input for the present TFD model. In this fashion, the max-
imum tangential force produced from the present TFD model is ðQpmÞmax ¼ 295:5 N, which differs from
ðQfeÞmax by 9.4%. There is very good overall agreement between the TFD curve from FEA and the TFD curve
from the present TFD model as shown in Fig. 9. It is noted that even the step-like behavior during the loading
stage is reproduced by the present TFD model. We emphasize that there is thus far no TFD model in the lit-
erature that exist for elasto-plastic contact, while existing TFD model for elastic contact cannot achieve the
overall quality shown in Fig. 9. The coefficient of restitution b for tangential direction represents the energy
dissipation ratio in the tangential direction of the contact, which is computed by taking the square root of the
ratio between the restoring energy (area under the unloading curve) and the storing energy (area under the
loading curve) in tangential direction, i.e.,
b :¼ Area under tangential unloading curve

Area under tangential loading curve

� �1=2

¼
Ploading

i2fdi�di�1>0g
1
2
ðdi � di�1ÞðQi þ Qiþ1ÞPunloading

j2fdj�dj�1<0g � 1
2
ðdj � dj�1ÞðQj þ Qjþ1Þ

 !1=2

:

ð4:1Þ

Fig. 9 shows the tangential coefficient of restitution from the present TFD model is bpm ¼ 0:6192, which differs
from the FEA result, bfe ¼ 0:5545, by 11.7%. Both bpm and bfe are much smaller than the coefficient
bmin ¼ 0:9716 from the MD theory [30].

Fig. 10 shows the TFD curves under varying normal force P with P max ¼ 500 N (loading history B in Fig. 8
and Table 1). The TFD curve produced by the present elasto-plastic TFD model is close to the TFD curve
from FEA, especially for the loading part. Since P max ¼ 500 N > P Y ¼ 36:45 N, both the TFD curve from
FEA and the TFD curve produced by the present TFD model show much larger energy dissipations in tan-



Fig. 10. TFD curves for loading history B (Fig. 8 and Table 1): Comparison of the present elasto-plastic TFD model, FEA, and Mindlin
& Deresiewicz [1953] (MD[1953]) elastic contact theory.

Fig. 11. TFD curves for loading history C (Fig. 8 and Table 1): Comparison of the present elasto-plastic TFD model, FEA, and Mindlin
& Deresiewicz [1953] (MD[1953]) elastic contact theory.
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gential direction than that from the MD theory [30] for elastic contact. Again, Fig. 10 shows that the MD
theory [30] cannot predict the TFD relationship correctly for elasto-plastic contact when there is plastic defor-
mation. On the other hand, the maximum tangential force used for the FEA is ðQfeÞmax ¼ 90 N, and the max-
imum tangential force produced from the present TFD model is ðQpmÞmax ¼ 93:1 N, i.e., a difference of only
3.4%. The tangential coefficient of restitution from the present TFD model, bpm ¼ 0:8063, differs from that
of FEA results, bfe ¼ 0:7352, by only 9.7%. Both bpm and bfe are sharply different from bmin ¼ 0:9716 from



Fig. 12. TFD curves for loading history D (Fig. 8 and Table 1): Comparison of the present elasto-plastic TFD model, FEA, and Mindlin
& Deresiewicz [1953] (MD[1953]) elastic contact theory.
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the MD theory [30]. The present elasto-plastic TFD model correctly predicts not only the tangential force
level, but also the energy dissipation of this elasto-plastic contact in tangential direction.

Fig. 11 is one more example showing the comparison of TFD curves under varying normal forces, and
computed using different models. In this case, the maximum normal force is P max ¼ 250 N (the loading history
C in Fig. 8 and Table 1). It shows again that the TFD curve produced by the present elasto-plastic TFD model
is close to the TFD curve from FEA, with both of those TFD curves for elasto-plastic contact being quite
different from the TFD curve produced by the MD theory [30] for elastic contact. The maximum tangential
force used for the FEA is ðQfeÞmax ¼ 45 N, and the maximum tangential force produced from the present TFD
model is ðQpmÞmax ¼ 46:2 N, i.e., a difference of only 2.6%. The tangential coefficient of restitution from differ-
ent models are: bfe ¼ 0:8309, bpm ¼ 0:8839, and bmin ¼ 0:9743.

Fig. 12 is an example showing the comparison of TFD curves under a varying tangential force Q and a
constant normal force P ¼ 2600 N (the loading history D in Fig. 8 and Table 1). As described in Section
3.1, we can see in Fig. 12 that the TFD curve from FEA with the effect of plastic deformation
(P ¼ 2600 N� P Y ¼ 36:45 N) is stiffer in the early loading stage than that from the MD theory [30] for elastic
contact. Fig. 12 also shows that the energy dissipation in the tangential direction from FEA is larger than that
from the MD theory [30], because energy dissipation caused by plastic deformation is accounted for in FEA
while only the energy dissipation caused by friction is accounted for in the MD theory [30]. The TFD curve
produced by the present elasto-plastic TFD model (Fig. 12) agrees qualitatively incorporate the stiffening
effect that discussed in Section 3.1. After an overshoot in the stiffening effect at the beginning of the loading
stage, the present model softens to an accurate value for the maximum tangential force (probably caused by
the friction limit), and then follows an unloading curve with the same slope as in FEA (which is also stiffer
than the TFD curve from the MD elastic contact theory [30]). Thus despite a decrease in accuracy in the load-
ing stage due to excessive normal load P, the present TFD model shows good recovery of the stiffness over-
shoot and accuracy in the unloading stage. In addition, Fig. 12 shows that the tangential coefficient of
restitution from the present TFD model, bpm ¼ 0:6693, agrees with the FEA results, bfe ¼ 0:6887, with a dif-
ference of only 2.8%.

Remark 4.2. From the results shown in Figs. 9–12, we observe the following behavior of the present elasto-
plastic TFD model: (i) For the case where both P and Q are varying, the results produced by the present TFD
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model are quantitatively accurate in both the force magnitude and the dissipation of the energy in comparison
with FEA results. (ii) For the case where P ¼ constant ðjDQj

jDP j ¼ 1Þ and P � P Y , there is a substantially larger
amount of plastic deformation and contact area, the present TFD model displays some stiffness overshoot at
the beginning of the loading stage, but a good maximum tangential force and a good unloading curve.
5. Conclusion

We have presented an elasto-plastic frictional tangential force–displacement (TFD) model for two colliding
spheres in a displacement-driven version that is needed for implementation in DEM simulation codes. The
present TFD model accounts for both elastic and plastic deformations that inevitably occur in most impact
problems. A cardinal feature of the present TFD model is the additive decomposition of the contact radius
into an elastic part and a plastic correction part, similar to the additive decomposition of the elasto-plastic
strain in the continuum theory of elastoplasticity. The effect of permanent indentation after impact is repre-
sented by a correction to the radius of curvature. The effect of material softening due to plastic flow is repre-
sented by a correction to the elastic moduli. To account for the effect of the change in the normal force P on
the TFD relationship, a similar procedure as that developed in [32] for elastic contact is employed. Thus, the
present elasto-plastic TFD model is easy to implement, and is suitable for DEM simulation of systems involv-
ing a large number of particles. The present elasto-plastic frictional TFD model, together with the elasto-plas-
tic normal force–displacement (NFD) model in [2], form a set of elasto-plastic force–displacement (FD)
models that are consistent with each other. For simulation of granular flows by DEM, there has been a lack
of a force–displacement model that is completely consistent in both the normal direction and in the tangential
direction and that accounts for plastic deformation. Numerical examples show that the present elasto-plastic
frictional TFD model produces accurate results in both the tangential force level and the energy dissipation
(the area inside the hysteretic TFD curves) for a wide range of loading cases. More details on the application
of the present elasto-plastic NFD and TFD models in DEM simulations will be presented in the future.
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